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The accessible time range for picosecond experimental measurements is now
short enough, and that for molecular dynamics theoretical computation is
now long enough, to significantly overlap. This overlap of theory and
experiment can, at least in principle, be exploited to discover the trajec-
tories of atoms during chemical processes in solution, for example rota-
tional and vibrational relaxation (1], rotational and vibrational dephasing
{2), and chemical reactions. This is significant in that our understanding
of the microscopic basis of processes in liquids has fallen far behind our
- understanding of the gas phase. In fact, the atomic motions which form the
. microscopic mechanisams for solution processes are hardly understood at all,
even though most proltesses of interest to most chemists occur in solution.

If we are efficiently to discover these microscopic atomic trajectories,
1.8, the molecular dynamics of solution processes, we must be adble to both
theoretically compute and experimentally measure a macroscopic phenomena
which depends closely upon the microscopic trajectories. We believe that
transient vibrational spectra can serve this function. In this paper we
will bdriefly discuss some of the theory for computing infrared and Raman
spectra from molecular dynamics and will present an example of such a spec-
trum.

Two problems must be solved to compute such spectra. First, a theoreti-
cal approach must be developed which can be applied to the large number of
[ atoms (~100-1000 including solvent molecules) involved in solution

processes. This gives an incentive to develop ways to compute quantum
reality largely from classical mechanics. Second, a computational approach
nust be developed capable of actually calculating spectra in a reasonable

time. The latter problem is a significant one, as t.o compute 10"2 seconds

of real time we find we may need to carry out 10 floating point arith-
metic operations, in order to sufficiently sample phase space.

-

To compute ir and Raman spectra we need three input functions. From
'v(lr }), the potential energy as a, function of atomic positions, plus the

mitial positions (r (0)} and velocities (ri(o)l of the atoms, we compute,
using classical ncnanies. the set of atomic trajectories lri(t.)} From
these trajectories and w((r,(}), the dipole moment. as a function of atomic

positions, we compute u(t), the dipole moment of the sample as a function
of time. Using linear response theory (3-6], and suitable quantum correc- |
tions (6], we compute an ir spectrum. Finally, we average many such
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spectra over runs with different initial {:-i(on and {1'-1(0)} chosen from

the ensemble which represents the experimental conditions of interest, usu-
ally a given temperature and pressure. In a similar mpanner, we use
r({ri}), the polarizability matrix as a function of atomic positions, to

compute the Raman spectrum. While the computations are mathematically
relatively straightforward, the number of arithmetic operations is very
large and we therefore carry them out on an array processor {7,8].

We have been refining this technique by comparing the computed spectra
against known ir and Raman spectra of ordinary gas and liquid samples, i.e.
time independent, equilibrium spectra. The results are encouraging. Fig.1
shows an example.

Fig.1l The CO gas phase fundamental

2000 vibrational-rotational band at 298 K. The
’ . ¥ top panel shows the spectrum as computed from
summing up all the applicable transitions
calculated in the usual way from time depen-
dent quantum perturbation theory. The dashed
line shows the rotational transitions making
up the P (AJ==1) and R (AJ=+1) branches. The
solid line shows the band contour produced by
broadening out these rotational lines until
they merge (which may be done experimentally
by adding rare gas). The middle panel shows
the quantum band contour (solid line) com-
pared with the correspondence principle clas-
sical contour (open circles) calculated in
the limit of quantum mechanics as Planck's
L - constant h+ 0. Two simple and relatively
small quantum corrections have been applied
. to -the correspondence principle c¢lassical
band contour. The rotational correction
accounts for the different population ratios
in .classical and quantum mechanics of the
rotational states connected by the transi-
tion. The vibrational correction i3 a fre-
quency shift due to the fact that the classi-

4 cal diatomic vibrates at =~kT (-200 cm").
near the bottom of the well and thus in a
largely harmonic region, while the quantum
4 diatomic is sampling the potential in the

~m° (2000 ca~) energy range in which the

effects of anharmonicity are more pronounced.
T As can bde seen, after these quantum correc-
200 2200 200 tions the correspondence principle classical
WIVENUMBERS (CM™) and the quantum band contours agree almost
exactly, demonstrating that the band contour
can be understood classically. The lower panel shows again the quantum
band contour (solid line) and superimposed on it the gquantum corrected
Newtonian classical band contour (triangles) from classical wmolecular
dynasics, classical linear response theory and classical statistical
mechanical ensemble averaging. The filled circles show the shape of the
oxporirr;ul band contour for CO with added He as measured by ARMSTRONG and
WELSH (9].
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We see that the band contour results for all four of the following
agree: i) quantum time-dependent perturbation theory, ii) quantum-corrected
correspondence principle c¢lassical mechanics, 1iii) quantum-corrected
Newtonian classical mechanics, and iv) experimental measurement. Thus, the
vibrational-rotational band contour can be understood on the basis of clas-
sical trajectories of the atoms.

If we mix CO in Ar and keep increasing the Ar pressure, both by
Newtonian classical mechanics [6] and by experimental wmeasurement [10] the
P and R branch peaks increasingly meld into one another until they fuse
into the usual single-peaked liquid state vibrational band contour [11].
Therefore, in the liquid state as well, one can compute and understand the
vibrational band contour in terms of classical atomic trajectories.

Finally, the techniques described here can be extended to treat the
non-equilibrium domain, so that one can compute transient ir and Raman
spectra during the course of picosecond processes, for example chemical
reactions in solution. In this way, one can hope to combine the computa-
tion and the measurement of picosecond transient vibrational spectra to
discover the microscopic mechanism, the atomic trajectories during chemical
reactions in solution.

We wish to thank the National Science Foundation, Chemistry, the Office
of Naval Research, Chemistry, and the National Institutes of Health, Divi-
sion of Research Resources, for providing the support which has made this
work possible.
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